Chapter VIII: Detectors based on ionization in semiconductors

Contents

- Introduction to semiconductors
- The semiconductor junction as a detector
- Silicon detectors
- Germanium detectors
- Other semiconductor materials

Semiconductors as detectors

- Semiconductor detector \rightarrow « comparable » to a gas detector in which the gaseous medium is replaced by a solid medium put between 2 electrodes
- The passage of ionizing radiation creates electron-hole pairs (instead of electron-ion pairs in gas detector) \rightarrow pairs are collected by an electric field
- Semiconductor detector \rightarrow solid ionization chamber
- Advantage 1 for semiconductors: energy required for one pair is \sim 3 $eV \rightarrow 10$ times smaller compared to gas detectors \rightarrow largely better resolution
- Advantage 2: greater density \rightarrow greater stopping power \rightarrow compact in size
- 1 inconvenient: except for silicon they require low temperature to operate \rightarrow additional cryogenic system

Energy band structure

- **Insulator** Semiconductor Metal
• Energy bands are regions of many and very close discrete levels continuum
- Configuration due to the periodic crystal structure \rightarrow overlapping of electron wavefunctions
- Energy gap is a region without energy levels at all (width: *E^g*)
- e in the valence band are bound with the atoms
- e in the conduction band are free
- E_F : Fermi energy (energy of the highest occupied state at $T = 0$ K)

Charge carriers in semiconductors (1)

- At $T = 0$ K, all e⁻ are in the valence band \rightarrow empty conduction band \rightarrow no current if an electric field is applied
- At ambient $T \rightarrow$ thermal fluctuations excite a few valence e^{-} to the conduction band (negative charge carrier) leaving a hole in its original position
- A neighboring valence e-can jump from its bond to fill the hole \rightarrow sequence can be repeated \rightarrow hole (h⁺) moves through crystal \rightarrow positive charge carrier
- Charge carriers \rightarrow an electric field implies a current
- In semiconductors, two source of current: movement of free e in the conduction band and h⁺ in the valence band

Charge carriers in semiconductors (2)

- When energy is transferred to a crystal atom by a radiation incident on the semiconductor \rightarrow an e⁻ can be excited to high energy levels inside the conduction band \rightarrow presence of a h⁺ inside the valence band
- Very quickly after this $1^{\text{ère}}$ excitation \rightarrow the e⁻ deexcites to the bottom of the conduction band and the ionized atom loses its excitation energy and the h⁺ stays in the top of the valence band
- The energy loss during this process gives rise to the creation of phonons and to other excitations which produce other e-h⁺ pairs \rightarrow creation of a lot of e-h⁺ pairs
- After $\sim 10^{-12}$ s \rightarrow all the e are in the bottom of the conduction band and all the $h⁺$ are in the top of valence band
- The initial energy has been shared between the e-h⁺ pairs and the crystal lattice (creation of phonons) \rightarrow equivalence e-h⁺ \leftrightarrow e-ions and phonons \leftrightarrow excitations by comparison with a gas 66

Intrinsic charge carriers concentration

• The probability that a particular level is occupied in thermal equilibrium is given by the Fermi-Dirac distribution (with k= 1.38 10^{-23} JK $^{-1}$: the Boltzmann constant)

$$
f(E) = \frac{1}{\exp\left(\frac{E - E_F}{kT}\right) + 1}
$$

• e-h⁺ pairs are constantly generated by thermal energy and can also recombine \rightarrow under stable conditions \rightarrow for pure semiconductor, equilibrium concentrations of e- and h⁺ are equal: *n = p = nⁱ* :

$$
n_i = AT^{3/2} \exp\left(\frac{-E_g}{2kT}\right)
$$

 with A, a constant dependent on the medium and independent on *T*

Examples: Si and Ge

- Silicon and germanium are the 2 most common semiconductors
- Both are used as detector
- Their crystal lattice is « diamond » type

$$
n_i(Si) = 2.8 \times 10^{16} T^{3/2} \exp\left(\frac{-6450}{T}\right) / \text{cm}^{-3}
$$

$$
n_i(Ge) = 9.7 \times 10^{15} T^{3/2} \exp\left(\frac{-4350}{T}\right) / \text{cm}^{-3}
$$

• Example \rightarrow for *T* = 300 K \rightarrow *n*_{*i*}(S*i*) = 6.7 \times 10¹⁰ cm⁻³

Mobility for an intrinsic semiconductor

Under the action of an applied electric field $E \rightarrow$ drift velocities for e⁻ and h⁺ are

$$
v_e = \mu_e E
$$

$$
v_h = \mu_h E
$$

where $\mu_{e,h}$ are the mobilities of e- and h⁺ (depending on E and T \rightarrow for low E: μ is independent on E, for high E: μ saturates)

- Generally $\mu_h < \mu_e$ because motion of hole necessitates transition of an electron between neighboring atoms (ratio is \approx 2-3)
- Mobilities determine current \rightarrow conductivity σ and resistivity ρ

$$
\sigma = en_i(\mu_e + \mu_h) \qquad \rho = \frac{1}{en_i(\mu_e + \mu_h)}
$$

Examples of drift velocities: Si

Some physical properties of Si and Ge

주인 아이가 아니라 사람이 아무리

Ohmic Contacts

- An ohmic contact allows to e⁻ to travel in both directions
- When e- and h⁺ are created in in equal numbers in the sc \rightarrow the charges split off as a function of their sign
- Some charges arrive on their electrode before the other ones and the initially neutral medium is then charged \rightarrow this space charge creates an electric field implying the injection of charge at an electrode
- In our case only e⁻ can be injected at negative electrode to maintain the equilibrium concentrations inside the $sc \rightarrow$ multiplication of the number of e- and apparition of a current
- The intensity of this current is no predictable \rightarrow depends on the place where the pairs are created, on the mobility of the carriers and on the geometry of the internal electric field
- No possibility of use of the sc in such conditions \rightarrow use of pn junctions

Doped semiconductors: n-type

- Silicon and Germanium are tetravalent
- If a pentavalent impurity (doping) atom as arsenic, phosphorus, antimony (donor element) is introduced \rightarrow replacing an atom lattice \rightarrow an extra electron does not fit into the valence band
- This extra e^- is weakly bound \rightarrow easily excited to the conduction band \rightarrow localized level just below the bottom of the conduction band
- Ionization energy of this extra level: a few 0.01 eV \rightarrow comparable to thermal energy \rightarrow e⁻ in the conduction band without h⁺ in the valence band → n-type semiconductor
- Practically concentration of donor $N_D \gg n_i \rightarrow$ electron concentration $n \approx N^{}_D$ ($N^{}_D$ \sim 10^{15} atoms/cm³) \rightarrow

$$
\sigma=e N_D \mu_e
$$

Doped semiconductors: p-type

- If a trivalent impurity atom as gallium, boron indium (acceptor element) is introduced \rightarrow replacing an atom lattice \rightarrow no enough electron to fill the valence band \rightarrow excess of hole
- A captured e^- in this hole is less bound than normal $e^- \rightarrow$ localized level just above the top of the valence band
- e in the valence are easily excited to this level \rightarrow extra hole in the valence band without e^- in the conduction band \rightarrow p-type **semiconductor**
- Practically concentration of acceptor $N_A \gg n_i \rightarrow h$ ole concentration p \approx N_A (N_A \sim 10¹⁵ atoms/cm³) \rightarrow

$$
\sigma=e N_A \mu_h
$$

Representation of doped (extrinsic) semiconductors

Extrinsic charge carriers concentration

For n-type, the added concentration of e⁻ in the conduction band $\rightarrow \mathcal{A}$ recombination rate with holes $\rightarrow \mathcal{A}$ concentration of holes in the valence band \rightarrow at equilibrium:

$$
np=n_i^2
$$

Example: at room T, for Si (density of \sim 10²² atoms/cm³), intrinsic carrier density is ${\sim}10^{10}$ atoms/cm 3 . If donor impurities are present with a density of \sim 10¹⁷ atoms/cm³, density of electrons n is \sim 10¹⁷ atoms/cm³ and density of holes p is \sim 10³ atoms/cm³

ATTENTION: Neutrality is assured by nuclei of impurities

pn semiconductor junction

≠ density of charge → diffusion of majority e - from n-region to p-region and of majority h⁺ from p-region to n-region \rightarrow in the junction zone: recombination of e and $h^+ \rightarrow$ positive ions in the n-region and negative in the p-region \rightarrow electric field in this region (10³ V/cm) (called *depletion region*) → **very small solid ionization chamber**

Depletion depth (1)

• The width of the depletion zone (*= d*) depends on the concentration of n and p impurities. It can be determined from Poisson's equation (with ε the dielectric constant):

$$
\frac{d^2V}{dx^2} = -\frac{\rho(x)}{\varepsilon}
$$

• If we consider an uniform charge distribution about the junction and with x_n and x_p the extents of the depletion zone on the n- and psides and a contact potential $V_0 \rightarrow$

$$
\rho(x) = \begin{cases} eN_D & 0 < x < x_n \\ -eN_A & -x_p < x < 0 \end{cases}
$$

• Since the charge is conserved: $N_A x_p = N_D x_n$ (with $N_A \approx p$ the acceptors concentration and $N_p \approx n$ the donors concentration)

Depletion depth (2)

Depletion depth (3)

• Integrating Poisson's equation:

$$
\frac{dV}{dx} = \begin{cases} -\frac{eN_D}{\varepsilon}x + C_n & 0 < x < x_n \\ \frac{eN_A}{\varepsilon}x + C_p & -x_p < x < 0 \end{cases}
$$

• Since $dV/dx = 0$ at $x = x_n$ and $x = -x_p$:

$$
\frac{dV}{dx} = \begin{cases}\n-\frac{eN_D}{\varepsilon}(x - x_n) & 0 < x < x_n \\
\frac{eN_A}{\varepsilon}(x + x_p) & -x_p < x < 0\n\end{cases}
$$

• One more integration:

$$
V(x) = \begin{cases} -\frac{eN_D}{\varepsilon} \left(\frac{x^2}{2} - x_n x \right) + C & 0 < x < x_n \\ \frac{eN_A}{\varepsilon} \left(\frac{x^2}{2} + x_p x \right) + C' & -x_p < x < 0 \end{cases}
$$

20

Depletion depth (4)

• As solutions are equal at $x = 0 \rightarrow C = C'$ and as $V(x_n) = V_0$ and *V(-x^p) = 0*: $V_0 = \frac{eN_D}{2\varepsilon}x_n^2 + C$ $0 = -\frac{eN_A}{2\varepsilon}x_p^2 + C$

• Eliminating *C*:

$$
V_0 = \frac{e}{2\varepsilon} (N_D x_n^2 + N_A x_p^2)
$$

• Using the charge conservation equation:

$$
x_n = \left(\frac{2\varepsilon V_0}{eN_D[1 + N_D/N_A]}\right)^{1/2} \text{ and } x_p = \left(\frac{2\varepsilon V_0}{eN_A[1 + N_A/N_D]}\right)^{1/2}
$$

$$
d = x_n + x_p
$$

Depletion depth (5)

• Considering for instance $N_A \gg N_D \rightarrow X_n \gg X_p \rightarrow$

$$
d \simeq x_n \simeq \left(\frac{2\varepsilon V_0}{eN_D}\right)^{1/2}
$$

- Extension of the depletion zone to the n-side
- For Si with $\rho = 20000$ Ωcm and $V_0 = 1$ V \rightarrow d \approx 75 μ m

Reversed bias junction

- If an external voltage is applied that removes the potential difference (forward bias) \rightarrow a current will flow \rightarrow no use
- If an external bias voltage V_B is applied that re-enforces the potential difference (reverse bias) \rightarrow no current will flow
	- 1. This voltage attracts h⁺ in the p-region away from the junction and similarly for the e^- in the n region \rightarrow enlarge the depletion zone (use in previous equation $\mathsf{V}_{\mathsf{B}}\text{+}\mathsf{V}_{\mathsf{0}}\approx \mathsf{V}_{\mathsf{B}}$ because $\mathsf{V}_{\mathsf{B}}\gg \mathsf{V}_{\mathsf{0}}) \to 5$ mm in Si and 20 mm in Ge
	- 2. V_B is limited \rightarrow attention to the breakdown

Breakdown

- Breakdown of the junction \rightarrow abrupt increase of the inverse current when the applied inverse voltage reach a limit value (breakdown voltage)
- The breakdown is not destructive if the inverse current is limited by an external circuit to avoid an excessive overheating
- 2 breakdown mechanisms \rightarrow Zener effect and avalanche effect
- Zener effect \rightarrow the electric field is intense enough to extract an electron from the valence band and to move it into the conduction band \rightarrow current
- Avalanche effect \rightarrow a strongly accelerated electron can ionize an atom during a collision \rightarrow e⁻ - h⁺ pair \rightarrow the number of free carriers increases and the phenomenon recurs with the initial carrier and the secondary carriers \rightarrow carriers multiplication \rightarrow current
- As a function of conditions (temperature,...) \rightarrow either Zener either avalanche first occurs

Current – voltage feature

Principles of a semiconductor detector

- A radiation crossing the depletion zone of a pn junction in reverse bias creates many e⁻- h⁺ pairs
- The e drift to the positive pole and the h⁺ to the negative pole \rightarrow apparition of a current as an ionization chamber \rightarrow solid ionization chamber with small size
- The number of e- h⁺ pairs is directly \propto to the energy given by the radiation inside the junction \rightarrow the current intensity and thus the voltage pulse over a resistance will be \propto to this energy \rightarrow detector for both counting and spectroscopy

Principle of semiconductor Detector

Only the charges generated in the depletion layer are collected

Charge collection (1)

- When an ionizing radiation transfers its energy inside the active volume of the detector (= depletion zone) \rightarrow creation of an equal number of e^- and h^+
- Due to the electric field \rightarrow drift of the carriers in opposite directions \rightarrow the motion of the e- and the h⁺ forms the current which persists until the carriers are collected at the boundary of the active volume
- Exactly the same principle as for the charge collection inside a gaseous ionization chamber with 1 difference \rightarrow the time scale
- The mobility of the e is larger than the one of the h⁺ but of only a factor 2 or 3 \rightarrow the collection time of the carriers are similar
- The total current includes the currents due to the 2 types of carriers

Charge collection (2)

Silicon detectors

- Operation at room temperature, except Si(Li)
- At room temperature: average energy for e-h⁺ pair creation: 3.62 eV
- Disadvantage: relatively small size of the depletion zone (\approx 5 mm) \rightarrow mainly used for charged particles counting or spectroscopy (mean free path for γ too large)
- Other application \rightarrow position-sensitive detector for charged particles
- Fano factor not well determined but $\approx 0.11 \rightarrow$ typical resolution for 5.5 MeV α : 3.5 keV (or 0.063%)

Different types of Si detectors

- Diffused Junction Diodes
- Surface Barrier Detector
- Ion-Implanted Diodes
- Lithium-Drifted Silicon Diodes Si(Li) p-i-n Diode
- Micro-Strip Detector

Diffused Junction Diode

- Historically: first device for detection
- We have an homogeneous crystal of p type \rightarrow diffusion at high T (\approx 1000 °C) of n-type impurities (as phosphorous) \rightarrow conversion of an area close of the surface into n type
- Very robust diode but surface very doped $(N_D, \lambda) \rightarrow$ extension of the depletion layer into the p-side \rightarrow presence of a thick dead layer equivalent to the diffusion area ($\approx 1 \ \mu m$)
- Embarrassing for the detection of charges particles \rightarrow not used currently

Surface Barrier Detector (SSB)

- Most used type of silicon detector
- Junction created between a semiconductor and a metal (generally \rightarrow n type Si + Au or p type Si + Al)
- Due to the \neq between the Fermi levels of the 2 media \rightarrow modification of the bands in the sc \rightarrow formation of a Shottky barrier
- Depletion area which can reach \approx 5 mm
- Advantages: easy making process + small thickness dead layer \sim thickness of the metal \sim 20 nm
- Disadvantage: very light sensitive (metal thickness too small to stop light photons) \rightarrow obligatory protection + fragile
- Remark: presence of an oxide layer at the interface

Shottky barrier

- Example: metal $-$ n type sc
- When there is contact between the metal and the sc \rightarrow diffusion of the efrom the sc to the metal (≠ between E_{F}) \rightarrow area located at the contact in the sc empties of the e-
- This area contains positive donors \rightarrow apparition of an electric field \rightarrow diffusion of the e⁻ is stopped
- Depletion region equivalent to the a pn contact
- 34 2 differences \rightarrow weaker contact potential and depletion region only extended into the sc

Example of measurement with a SSB

Energy spectrum of alpha particles emitted by a source of ²⁴¹Am and recorded by a surface barrier silicon detector

Ion-Implanted junction

- The sc surface (n or p type) is bombarded by an ions beam (donors or acceptors) \rightarrow impurities are injected into the sc
- By adjusting the energy of the ions of the beam \rightarrow monitoring of the penetration depth, of the impurities concentration and of their depth profile
- Perfect control \rightarrow very stable detector, very thin dead layer (\sim 35 nm) \rightarrow best current detector \rightarrow used particularly in physics of high energies
- Disadvantage: high price

Lithium-Drifted Silicon Diode – Si(Li) – p-i-n Diode (1)

- The problem of previous diodes is the small depletion zone
- Solution \rightarrow use of compensated material (i) sandwiched between p and n types coats \rightarrow p-i-n
- Compensated semiconductor \rightarrow the impurities of a given type can be compensated by injection of impurities of the other type such as $N_D = N_A \rightarrow$ exactly the same quantity of donors and acceptors
- We retain most of the characteristics of intrinsic materials \rightarrow in particular no space charge in the i zone

Lithium-Drifted Silicon Diode – Si(Li) – p-i-n Diode (2)

- No space charge \rightarrow almost constant *E*
- The thickness of the compensated zone can reach \approx 15 mm = zone in which the particle has to deposit its energy
- Suitable for β and (weak energy) X-ray detection

Lithium-Drifted Silicon Diode – Si(Li) – p-i-n Diode (3)

- We consider p-type Si
- Diffusion of lithium (donor) that compensates acceptors \rightarrow Si(Li) detector
- Li is used because of its high diffusion coefficient \rightarrow it does not move until lattice sites but slides up to interstices and forms a pair with p type impurities of the medium
- Problem: at room temperature \rightarrow Li continue to diffuse \rightarrow it overcomes all crystal \rightarrow necessity of cooling the detector (even in no-use periods) \rightarrow use of liquid nitrogen

Micro-Strip detector (1)

- Detector constituted of a substrate of n type Si on which a series of micro-strips of p type Si are implanted at 20 μ m intervals and linked to aluminium contacts
- The number of collected charges at a given contact is dependent on the trajectory of the incident particle
- Space resolution \approx 5 μ m

Micro-Strip detector (2)

 $20 \mu m$

 $-36mm$

Charged particle tracking detector used in the CMS (Compact Muon Solenoid) experiment

Germanium detectors

- Due to its small band gap (\approx 0.7 eV) \rightarrow operation must be at low temperatures to prevent leakage current from thermally generated e-h⁺ pairs in the depletion zone
- At 77 K (temperature of liquid nitrogen) \rightarrow average energy for e-h⁺ pair creation: 2.96 eV
- Large atomic number $(Z_{Ge} = 32$ while $Z_{Si} = 14$) \rightarrow large photoelectric cross section (60 times greater in Ge than in Si) \rightarrow mainly used for γ -ray detection
- Not often used for charged particles detection because no advantage over Si and Ge needs cooling
- Typical resolution for 1.33 MeV γ : 1.7 keV (or 0.13%) with $F < 0.13$
- **Expensive**

Lithium-Drifted Germanium Diodes - Ge(Li)

- Diffusion of lithium inside p type Ge \rightarrow Ge(Li) detector
- In practice thickness of the compensated zone: \approx 15-20 mm
- Due to the diffusion of Li at room temperature \rightarrow necessity of continuously cooling (not only during use)
- No more used actually

Intrinsic Germanium (High Purity Germanium: HPGe)

- Actually \rightarrow possibility to obtain high purity Ge crystals (< 10^{10}) impurity atoms/cm³) \rightarrow quasi-intrinsic Ge \rightarrow development of HPGe detector (« High Purity Germanium »)
- The crystals can be p or n type according to the nature of residual impurity traces
- The junctions are carried out by doping with ion-implantation one of the faces of the quasi-intrinsic crystal which can be a very large volume
- Colling necessary only during use for radiation detection to reduce the thermal background noise and not during storage
- Frequently use for γ spectroscopy

Photo et scheme of HPGe detector with liquid nitrogen

Example of HPGe detector with electrical cooling

46 Detector HPGe *Falcon 5000* from Canberra with pulsed gas tube cooling (refrigeration machine operating in closed cycle \rightarrow allow to obtain permanent cooling sources (\approx 3-120 K) by using the thermodynamic cycles of compression/relaxation of gaseous He)

Spectrum of γ rays emitted by ¹³⁷Cs source

Example of γ spectroscopy with HPGe (2)

Other semiconductor materials

- Wish to use high performance detectors but without cooling \rightarrow use at room temperature \rightarrow low thermal background noise \rightarrow Eg large « enough »
- Use of materials with high Z to maximize photoelectric effect for the detection of γ
- CdTe, HgI₂, GaAs, GaSb, InSb,...

Cadmium telluride detectors (CdTe)

- High Z (Z_{Cd} = 48 and Z_{Te} = 52) \rightarrow cross section for photoelectric effect 5 \times larger than for Ge
- Energy band gap large enough (E_g = 1.52 eV) \rightarrow use at room temperature
- Poor collection efficiency of $h^+ \leftrightarrow$ capture by traps \rightarrow energy resolution less good than for Si or Ge
- Trapping of e^- by deep acceptor levels \rightarrow accumulation of the charges \rightarrow polarization variable in time $\rightarrow \rightarrow \infty$ of the charge collection and $\rightarrow \rightarrow \infty$ of the thickness of the depletion region \rightarrow efficiency Δ
- Difficult transport of charges \rightarrow limited volume
- Commercially available but expensive
- Used when the detection efficiency of high energy γ isessential

Example of γ spectroscopy with a CdTe

Possibility to electronically compensate the h⁺ trapping

Mercuric iodide Detectors (HgI₂)

- High Z (Z_{Hg} = 80 and Z_1 = 53) \rightarrow cross section for photoelectric effect 50 \times larger than for Ge \rightarrow 85% of a 100 keV photons beam is absorbed in 1 mm thick HgI₂ (for a equivalent percentage \rightarrow 10 mm Ge or 2.6 mm CdTe are needed)
- Large energy band gap (E_q = 2.13 eV) \rightarrow use at room temperature with a very small thermal background noise
- Problems: weak h⁺ mobility, incomplete charge collection caused by h⁺ trapping, polarization, deterioration of the surface with time \rightarrow limited resolution, limited volume, efficiency \searrow with time
- High price

CZT detectors

- Use of ternary compound $Cd_{1-x}Zn_xTe$ (CZT) with $0.04 < x < 0.2$
- Energy band gap varying between 1.53 and 1.64 respectively
- At room temperature \rightarrow very good energy resolution and large volume possible
- No polarization effect but trapping of holes at short term \rightarrow asymmetry of the peaks
- Difficulties to obtain a crystal without defect (such as metallic inclusions, grains boundary,...) \rightarrow complex reproducibility
- Expensive (but become more democratic)

Example of X-ray spectroscopy with $Cd_{0.8}Zn_{0.2}Te$

X and γ spectrum from ²⁴¹Am

Summary of applications of semiconductor detector

- Silicon detectors (generally SSB or implantation) \rightarrow principal use in spectroscopy (or detection) of charged particles (proton, $(\alpha,...)$ and for the determination of the trajectories of charged particles
- Germanium detectors (generally HPGe) \rightarrow principal use for detection and spectroscopy of γ rays